汤姆逊效应 反焦耳汤姆逊效应是什么

时间:2024-09-20 11:45:12 来源:风铃百科 作者:管理员

焦汤效应定义

在气体通过节流阀的过程中,会产生压力突变,继而引起温度发生改变。这种现象被称为焦耳-汤姆逊效应(有时也称汤姆逊-焦耳效应),事实证明,这一现象对制冷系统以及液化器、空调和热泵的发展起到了非常重要的作用。例如,这一效应可以用来解释为什么当我们从自行车轮胎中释放空气时,轮胎气门会变冷。

当流动的气体通过调压器时(此时调压器起到的作用类似于节流装置、阀门或多孔塞),就会发生焦耳-汤姆逊效应所描述的温度变化。然而,这种温度变化并不总是我们想要的。为了平衡与焦耳-汤姆逊效应相关的温度变化,我们往往会用到加热或冷却元件。

反焦耳汤姆逊效应是什么

焦耳─汤姆逊效应又称节流效应,是指流体经过节流膨胀过程前后的焓不变,其在工业上的重要用途是让流体经过节流阀进行节流膨胀,以获得低温和液化气体1焦耳─汤姆逊实验1843年焦耳通过实验得出结论:气体的内能和消只是温度的函数,而与体积和压力无关.此结论只适用于理想气体,对于实际气体就不适用了.1852年焦耳和汤姆逊设计了另外一个新实验,设法克服了由于环境热容量比气体大得多,而不易观察到气体膨胀后温度可能发生变化的困难,比较精确地观察了气体由于膨胀而发生的温度改变.

温差电与电温差效应

1821年,德国科学家塞贝克首先发现了温差电的第一个效应,人们称之为塞贝克效应——两种不同的金属构成闭合回路,当两个接头存在温差时,回路中将产生电流,这一效应成为了温差发电的技术基础。而电子制冷所依赖的帕尔贴效应是法国科学家帕尔贴于1834年发现的,它是塞贝克效应的逆效应——两种不同的金属构成闭合回路,当回路中存在直流电流时,两个接头之间将产生温差。第三个效应——汤姆逊效应,是1856年由汤姆逊发现的。

温差电现象在发现后一百多年里一直未得到实际应用,原因是利用金属合金做成的温差电偶的温差电致冷效应很弱。直至上个世纪五十年代,由于半导体科学的发展,科学家发现用半导体材料构成的温差电偶,其温差电效应相当显著。之后,许多科学家在这方面做出了杰出贡献,到六十年代,温差电制冷达到了实用化阶段

珀尔帖效应汤姆逊效应

耳帖效应

当有电流通过不同的导体组成的回路时,除产生不可逆的焦耳热外,在不同导体的接头处随着电流方向的不同会分别出现吸热、放热现象。这是J.C.A.珀耳帖在1834年发现的。如果电流通过导线由导体1流向导体2,则在单位时间内,导体1处单位面积吸收的热量与通过导体1处的电流密度成正比。简单可以理解为:外加电场作用下,电子发生定向运动,将一部分内能带到电场另一端。

反焦耳杰姆逊效应是什么

又称节流效应,是指流体经过节流膨胀过程前后的焓不变,其在工业上的重要用途是让流体经过节流阀进行节流膨胀,以获得低温和液化气体1焦耳─汤姆逊实验1843年焦耳通过实验得出结论:气体的内能和消只是温度的函数,而与体积和压力无关。此结论只适用于理想气体,对于实际气体就不适用了。